Authors
Sungmi Song, Jin-Young Lee, Ludmila Ermolenko, Aloran Mazumder, Seungwon Ji, Heeju Ryu, HyeJin Kim, Dong-Wook Kim, Jung Weon Lee, Mario Dicato, Christo Christov, Michael Schnekenburger, Claudia Cerella, Déborah Gérard, Barbora Orlikova-Boyer, Ali Al-Mourabit, Marc Diederich
Publication date
2020/2/7
Journal
Cell death & disease
Volume
11
Issue
2
Pages
109
Publisher
Nature Publishing Group UK
Description
By comparing imatinib-sensitive and -resistant chronic myeloid leukemia (CML) cell models, we investigated the molecular mechanisms by which tetrahydrobenzimidazole derivative TMQ0153 triggered caspase-dependent apoptosis at low concentrations accompanied by loss of mitochondrial membrane potential (MMP) and increase of cytosolic free Ca2+ levels. Interestingly, at higher concentrations, TMQ0153 induced necroptotic cell death with accumulation of ROS, both preventable by N-acetyl-L-cysteine (NAC) pretreatment. At necroptosis-inducing concentrations, we observed increased ROS and decreased ATP and GSH levels, concomitant with protective autophagy induction. Inhibitors such as bafilomycin A1 (baf-A1) and siRNA against beclin 1 abrogated autophagy, sensitized CML cells against TMQ0153 and enhanced necroptotic cell death. Importantly, TMQ153-induced necrosis led to cell surface …
Total citations
2020202120222023202474379