Authors
Abdolhosein Haddad, Amin Barari, Reza Amini
Publication date
2022/5/1
Journal
Marine Structures
Volume
83
Pages
103171
Publisher
Elsevier
Description
The assessment of liquefaction hazards to offshore wind turbines (OWTs) requires an improved understanding of the interplay among the foundation geometry, ground shaking, and liquefaction-induced deformations. In this note, shaking table model tests were used to evaluate the behavior of suction caissons due to seabed liquefaction. Spectral accelerations and settlement of OWT foundations of varying skirt lengths on liquefiable sand were analyzed and compared.
Insights into the performance of caisson skirts as a liquefaction countermeasure relative to the benchmark models are provided. The experimental results identified the two controversial mechanisms controlling shear-induced caisson settlement; the liquefaction-induced bearing capacity failure as the skirt length increases, whereas the larger net excess pore-water pressures within skirts contribute more significantly to reducing seismic demand.
Overall …
Total citations
20212022202320241285