Authors
Jonathan Lenoir, Bente Jessen Graae, Per Arild Aarrestad, Inger Greve Alsos, W Scott Armbruster, Gunnar Austrheim, Claes Bergendorff, H John B Birks, Kari Anne Bråthen, Jörg Brunet, Hans Henrik Bruun, Carl Johan Dahlberg, Guillaume Decocq, Martin Diekmann, Mats Dynesius, Rasmus Ejrnaes, John‐Arvid Grytnes, Kristoffer Hylander, Kari Klanderud, Miska Luoto, Ann Milbau, Mari Moora, Bettina Nygaard, Arvid Odland, Virve Tuulia Ravolainen, Stefanie Reinhardt, Sylvi Marlen Sandvik, Fride Høistad Schei, James David Mervyn Speed, Liv Unn Tveraabak, Vigdis Vandvik, Liv Guri Velle, Risto Virtanen, Martin Zobel, Jens‐Christian Svenning
Publication date
2013/5
Journal
Global Change Biology
Volume
19
Issue
5
Pages
1470-1481
Description
Recent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1 …
Total citations
201320142015201620172018201920202021202220232024101926242019292634142612