Authors
Zaiwei Wang, Lewei Zeng, Tong Zhu, Hao Chen, Bin Chen, Dominik J Kubicki, Adam Balvanz, Chongwen Li, Aidan Maxwell, Esma Ugur, Roberto Dos Reis, Matthew Cheng, Guang Yang, Biwas Subedi, Deying Luo, Juntao Hu, Junke Wang, Sam Teale, Suhas Mahesh, Sasa Wang, Shuangyan Hu, Eui Dae Jung, Mingyang Wei, So Min Park, Luke Grater, Erkan Aydin, Zhaoning Song, Nikolas J Podraza, Zheng-Hong Lu, Jinsong Huang, Vinayak P Dravid, Stefaan De Wolf, Yanfa Yan, Michael Grätzel, Merx G Kanatzidis, Edward H Sargent
Publication date
2023/6/1
Journal
Nature
Volume
618
Issue
7963
Pages
74-79
Publisher
Nature Publishing Group UK
Description
The tunable bandgaps and facile fabrication of perovskites make them attractive for multi-junction photovoltaics,. However, light-induced phase segregation limits their efficiency and stability, –: this occurs in wide-bandgap (>1.65 electron volts) iodide/bromide mixed perovskite absorbers, and becomes even more acute in the top cells of triple-junction solar photovoltaics that require a fully 2.0-electron-volt bandgap absorber,. Here we report that lattice distortion in iodide/bromide mixed perovskites is correlated with the suppression of phase segregation, generating an increased ion-migration energy barrier arising from the decreased average interatomic distance between the A-site cation and iodide. Using an approximately 2.0-electron-volt rubidium/caesium mixed-cation inorganic perovskite with large lattice distortion in the top subcell, we fabricated all-perovskite triple-junction solar cells and achieved an …
Total citations
20222023202412381
Scholar articles