Authors
Jacqueline M Tabler, William B Barrell, Heather L Szabo-Rogers, Christopher Healy, Yvonne Yeung, Elisa Gomez Perdiguero, Christian Schulz, Basil Z Yannakoudakis, Aida Mesbahi, Bogdan Wlodarczyk, Frederic Geissmann, Richard H Finnell, John B Wallingford, Karen J Liu
Publication date
2013/6/24
Journal
Developmental cell
Volume
25
Issue
6
Pages
623-635
Publisher
Elsevier
Description
Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for …
Total citations
201320142015201620172018201920202021202220232024251012144538937
Scholar articles