Authors
Michelle Caroline Sherrott
Publication date
2018
Institution
California Institute of Technology
Description
Two-dimensional van der Waals materials have recently been introduced into the field of nanophotonics, creating opportunities to explore novel physics and realize first-of-their kind devices. By reducing the thickness of these materials, novel optical properties emerge due to the introduction of vertical quantum confinement. Unlike most materials, which suffer from a reduction in quality as they are thinned, layered van der Waals materials have naturally passivated surfaces that preserve their performance in monolayer form. Moreover, because the thickness of these materials is below typical charge carrier screening lengths, it is possible to actively control their optical properties with an external gate voltage. By combining these unique properties with the subwavelength control of light-matter interactions provided by nanophotonics, new device architectures can be realized.