Authors
Dongqin Bi, Wolfgang Tress, M Ibrahim Dar, Peng Gao, Jingshan Luo, Clémentine Renevier, Kurt Schenk, Antonio Abate, Fabrizio Giordano, Juan-Pablo Correa Baena, Jean-David Decoppet, Shaik Mohammed Zakeeruddin, Mohammad Khaja Nazeeruddin, Michael Grätzel, Anders Hagfeldt
Publication date
2016/1/1
Journal
Science advances
Volume
2
Issue
1
Pages
e1501170
Publisher
American Association for the Advancement of Science
Description
We report on a new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence. We produce the perovskite films in a single step from a solution containing a mixture of FAI, PbI2, MABr, and PbBr2 (where FA stands for formamidinium cations and MA stands for methylammonium cations). Using mesoporous TiO2 and Spiro-OMeTAD as electron- and hole-specific contacts, respectively, we fabricate perovskite solar cells that achieve a maximum power-conversion efficiency of 20.8% for a PbI2/FAI molar ratio of 1.05 in the precursor solution. Rietveld analysis of x-ray diffraction data reveals that the excess PbI2 content incorporated into such a film is about 3 weight percent. Time-resolved photoluminescence decay measurements show that the small excess of PbI2 suppresses nonradiative charge carrier recombination. This in turn …
Total citations
2016201720182019202020212022202320242254273892822051471249254
Scholar articles