Authors
Zahra Shayegan, Fariborz Haghighat, Chang-Seo Lee, Ali Bahloul, Melanie Huard
Publication date
2018/8/15
Journal
Chemical Engineering Journal
Volume
346
Pages
578-589
Publisher
Elsevier
Description
The application of photocatalytic oxidation (PCO) in VOCs degradation is greatly hindered at high humidity levels. This is because VOCs compete with water molecules to adsorb on the generally hydrophilic photocatalyst surface, where photocatalytic reactions take place. Modified P25-TiO2 nanoparticles with surface fluorination (F-P25) was prepared to reduce the surface hydrophilicity of Degussa P25. The prepared samples were characterized by BET, SEM, and XPS tests. Herein, the effects of surface fluorination on the adsorption capacity of P25-TiO2 nanoparticles towards toluene, methyl ethyl ketone (MEK), and isobutanol, representing different classes of indoor air pollutants, were investigated. After surface fluorination, the adsorption capacity of modified TiO2 was compared to bare-TiO2 in a continuous reactor at four different relative humidity levels (i.e., 0, 20, 40, and 60%). Three adsorption isotherms …
Total citations
2018201920202021202220232024191212893
Scholar articles