Authors
Giulio Lorenzini, Maria Fernanda Espinel Lara, Luiz Alberto Oliveira Rocha, Mateus Das Neves Gomes, Elizaldo Domingues Dos Santos, Liércio André Isoldi
Publication date
2015/6/1
Journal
Int. J. Heat Technol
Volume
33
Issue
2
Pages
31-38
Description
The wave energy conversion into electricity has been increasingly studied in the last years. There are several converters, among them the Oscillating Water Column (OWC) device. Constructal Design and a computational modeling were applied to a geometric optimization of an Oscillating Water Column Wave Energy Converter, device that transforms the energy of incident waves into electrical energy. The aim is to convert maximum electrical power varying and analyzing the influence of the three degrees of freedom (DoFs): H1/L (ratio between the height and length of OWC chamber), H2/l (ratio between height and length of chimney), and H3 (submergence, which are related to the chamber and the chimney of the device, and the location in water depth respectively. Besides there are two constraints (fixed parameters): total area of the OWC chamber (A1) and total area of OWC device (A2). The computational domain consists of an OWC inserted in a tank where regular waves in a real scale are generated. The mesh was developed in ANSYS ICEM®. The computational fluid dynamics code ANSYS FLUENT® was used to find the numerical solution which is based on Finite Volume Method (FVM). The multiphasic Volume of Fluid (VOF) model was applied to tackle with the water-air interaction. The results led to a theoretical recommendation about the OWC geometry and its submergence which maximizes the device performance, since a redistribution of the OWC geometry and a variation in the value of its submergence could improve the hydropneumatic power from 10.7 W to 190.8 W for ratios H1/L, H2/l and H3 equal 0.135, 6.0 and 9.5 m …
Total citations
20152016201720182019202020212022202320242544311