Authors
Martin Holub, Anthony Birnie, Aleksandre Japaridze, Jaco van der Torre, Maxime den Ridder, Carol de Ram, Martin Pabst, Cees Dekker
Publication date
2022/12/19
Journal
Cell Reports Methods
Volume
2
Issue
12
Publisher
Elsevier
Description
Chromosome structure and function is studied using various cell-based methods as well as with a range of in vitro single-molecule techniques on short DNA substrates. Here, we present a method to obtain megabase-pair-length deproteinated DNA for in vitro studies. We isolated chromosomes from bacterial cells and enzymatically digested the native proteins. Mass spectrometry indicated that 97%–100% of DNA-binding proteins are removed from the sample. Fluorescence microscopy analysis showed an increase in the radius of gyration of the DNA polymers, while the DNA length remained megabase-pair sized. In proof-of-concept experiments using these deproteinated long DNA molecules, we observed DNA compaction upon adding the DNA-binding protein Fis or PEG crowding agents and showed that it is possible to track the motion of a fluorescently labeled DNA locus. These results indicate the practical …
Total citations
Scholar articles