Authors
Sihai Yang, Xiang Lin, William Lewis, Mikhail Suyetin, Elena Bichoutskaia, Julia E Parker, Chiu C Tang, David R Allan, Pierre J Rizkallah, Peter Hubberstey, Neil R Champness, K Mark Thomas, Alexander J Blake, Martin Schröder
Publication date
2012/8
Journal
Nature materials
Volume
11
Issue
8
Pages
710-716
Publisher
Nature Publishing Group UK
Description
The selective capture of carbon dioxide in porous materials has potential for the storage and purification of fuel and flue gases. However, adsorption capacities under dynamic conditions are often insufficient for practical applications, and strategies to enhance CO2–host selectivity are required. The unique partially interpenetrated metal–organic framework NOTT-202 represents a new class of dynamic material that undergoes pronounced framework phase transition on desolvation. We report temperature-dependent adsorption/desorption hysteresis in desolvated NOTT-202a that responds selectively to CO2. The CO2 isotherm shows three steps in the adsorption profile at 195 K, and stepwise filling of pores generated within the observed partially interpenetrated structure has been modelled by grand canonical Monte Carlo simulations. Adsorption of N2, CH4, O2, Ar and H2 exhibits reversible isotherms without …
Total citations
20122013201420152016201720182019202020212022202320245426753364937444446192314