Authors
Masaaki Komatsu, Satoshi Waguri, Masato Koike, Yu-shin Sou, Takashi Ueno, Taichi Hara, Noboru Mizushima, Jun-ichi Iwata, Junji Ezaki, Shigeo Murata, Jun Hamazaki, Yasumasa Nishito, Shun-ichiro Iemura, Tohru Natsume, Toru Yanagawa, Junya Uwayama, Eiji Warabi, Hiroshi Yoshida, Tetsuro Ishii, Akira Kobayashi, Masayuki Yamamoto, Zhenyu Yue, Yasuo Uchiyama, Eiki Kominami, Keiji Tanaka
Publication date
2007/12/14
Journal
Cell
Volume
131
Issue
6
Pages
1149-1163
Publisher
Elsevier
Description
Inactivation of constitutive autophagy results in formation of cytoplasmic protein inclusions and leads to liver injury and neurodegeneration, but the details of abnormalities related to impaired autophagy are largely unknown. Here we used mouse genetic analyses to define the roles of autophagy in the aforementioned events. We report that the ubiquitin- and LC3-binding protein "p62" regulates the formation of protein aggregates and is removed by autophagy. Thus, genetic ablation of p62 suppressed the appearance of ubiquitin-positive protein aggregates in hepatocytes and neurons, indicating that p62 plays an important role in inclusion body formation. Moreover, loss of p62 markedly attenuated liver injury caused by autophagy deficiency, whereas it had little effect on neuronal degeneration. Our findings highlight the unexpected role of homeostatic level of p62, which is regulated by autophagy, in controlling …
Total citations
2008200920102011201220132014201520162017201820192020202120222023202455991301531771861861501481551801491821431389043