Authors
Jie Yin, Yanyong Kang, Aaron P McGrath, Karen Chapman, Megan Sjodt, Eiji Kimura, Atsutoshi Okabe, Tatsuki Koike, Yuhei Miyanohana, Yuji Shimizu, Rameshu Rallabandi, Peng Lian, Xiaochen Bai, Mack Flinspach, Jef K De Brabander, Daniel M Rosenbaum
Publication date
2022/5/25
Journal
Nature communications
Volume
13
Issue
1
Pages
2902
Publisher
Nature Publishing Group UK
Description
The OX2 orexin receptor (OX2R) is a highly expressed G protein-coupled receptor (GPCR) in the brain that regulates wakefulness and circadian rhythms in humans. Antagonism of OX2R is a proven therapeutic strategy for insomnia drugs, and agonism of OX2R is a potentially powerful approach for narcolepsy type 1, which is characterized by the death of orexinergic neurons. Until recently, agonism of OX2R had been considered ‘undruggable.’ We harness cryo-electron microscopy of OX2R-G protein complexes to determine how the first clinically tested OX2R agonist TAK-925 can activate OX2R in a highly selective manner. Two structures of TAK-925-bound OX2R with either a Gq mimetic or Gi reveal that TAK-925 binds at the same site occupied by antagonists, yet interacts with the transmembrane helices to trigger activating microswitches. Our structural and mutagenesis data show that TAK-925’s selectivity is …
Total citations
2022202320242106
Scholar articles
J Yin, Y Kang, AP McGrath, K Chapman, M Sjodt… - Nature communications, 2022