Authors
Cristian Valeriu Patriche, Bogdan Roşca, Radu Gabriel Pîrnău, Ionuţ Vasiliniuc
Publication date
2023/8/23
Journal
Plos one
Volume
18
Issue
8
Pages
e0289286
Publisher
Public Library of Science
Description
Various research topics from the field of soil science or agriculture require digital maps of soil properties as input data. Such maps can be achieved by digital soil mapping (DSM) techniques which have developed consistently during the last decades. Our research focuses on the application of geostatistical methods (including ordinary kriging, regression-kriging and geographically weighted regression) and machine learning algorithms to produce high resolution digital maps of topsoil properties in Romania. Six continuous predictors were considered in our study (digital elevation model, topographic wetness index, normalized difference vegetation index, slope, latitude and longitude). A tolerance test was performed to ensure that all predictors can be used for the purpose of digital soil mapping. The input soil data was extracted from the LUCAS database and includes 7 chemical properties (pH, electrical conductivity, calcium carbonate, organic carbon, N, P, K) and the particle-size fractions (sand, silt, clay). The spatial autocorrelation is higher for pH, organic carbon and calcium carbonate, as indicated by the partial sill / nugget ratio of semivariograms, meaning that these properties are more predictable than the others by kriging interpolation. The optimal DSM method was selected by independent sample validation, using resampled statistics from 100 samples randomly extracted from the validation dataset. Also, an additional independent sample of soil profiles, comprising legacy soil data, and the 200k Romania soil map were used for a supplementary validation. The results show that machine learning and regression-kriging are the optimal …
Total citations