Authors
Shuxian Jiang, Keith A Britt, Alexander J McCaskey, Travis S Humble, Sabre Kais
Publication date
2018/12/5
Journal
Scientific reports
Volume
8
Issue
1
Pages
17667
Publisher
Nature Publishing Group UK
Description
We have developed a framework to convert an arbitrary integer factorization problem to an executable Ising model by first writing it as an optimization function then transforming the k-bit coupling (k ≥ 3) terms to quadratic terms using ancillary variables. Our resource-efficient method uses binary variables (qubits) for finding the factors of an integer N. We present how to factorize 15, 143, 59989, and 376289 using 4, 12, 59, and 94 logical qubits, respectively. This method was tested using the D-Wave 2000Q for finding an embedding and determining the prime factors for a given composite number. The method is general and could be used to factor larger integers as the number of available qubits increases, or combined with other ad hoc methods to achieve better performances for specific numbers.
Total citations
20182019202020212022202320242202535424918
Scholar articles
S Jiang, KA Britt, AJ McCaskey, TS Humble, S Kais - Scientific reports, 2018