Authors
Alex L Mitchell, Teresa K Attwood, Patricia C Babbitt, Matthias Blum, Peer Bork, Alan Bridge, Shoshana D Brown, Hsin-Yu Chang, Sara El-Gebali, Matthew I Fraser, Julian Gough, David R Haft, Hongzhan Huang, Ivica Letunic, Rodrigo Lopez, Aurélien Luciani, Fabio Madeira, Aron Marchler-Bauer, Huaiyu Mi, Darren A Natale, Marco Necci, Gift Nuka, Christine Orengo, Arun P Pandurangan, Typhaine Paysan-Lafosse, Sebastien Pesseat, Simon C Potter, Matloob A Qureshi, Neil D Rawlings, Nicole Redaschi, Lorna J Richardson, Catherine Rivoire, Gustavo A Salazar, Amaia Sangrador-Vegas, Christian J A Sigrist, Ian Sillitoe, Granger G Sutton, Narmada Thanki, Paul D Thomas, Silvio C E Tosatto, Siew-Yit Yong, Robert D Finn
Publication date
2019/1/8
Journal
Nucleic acids research
Volume
47
Issue
D1
Pages
D351-D360
Publisher
Oxford University Press
Description
The InterPro database (http://www.ebi.ac.uk/interpro/) classifies protein sequences into families and predicts the presence of functionally important domains and sites. Here, we report recent developments with InterPro (version 70.0) and its associated software, including an 18% growth in the size of the database in terms on new InterPro entries, updates to content, the inclusion of an additional entry type, refined modelling of discontinuous domains, and the development of a new programmatic interface and website. These developments extend and enrich the information provided by InterPro, and provide greater flexibility in terms of data access. We also show that InterPro's sequence coverage has kept pace with the growth of UniProtKB, and discuss how our evaluation of residue coverage may help guide future curation activities.
Total citations
2018201920202021202220232024519843142022812981
Scholar articles