Authors
Diana Hatoum, Daniel Yagoub, Alireza Ahadi, Najah T Nassif, Eileen M McGowan
Publication date
2017/1/9
Journal
PLoS One
Volume
12
Issue
1
Pages
e0169925
Publisher
Public Library of Science
Description
The annexin family and S100A associated proteins are important regulators of diverse calcium-dependent cellular processes including cell division, growth regulation and apoptosis. Dysfunction of individual annexin and S100A proteins is associated with cancer progression, metastasis and cancer drug resistance. This manuscript describes the novel finding of differential regulation of the annexin and S100A family of proteins by activation of p53 in breast cancer cells. Additionally, the observed differential regulation is found to be beneficial to the survival of breast cancer cells and to influence treatment efficacy. We have used unbiased, quantitative proteomics to determine the proteomic changes occurring post p14ARF-p53 activation in estrogen receptor (ER) breast cancer cells. In this report we identified differential regulation of the annexin/S100A family, through unique peptide recognition at the N-terminal regions, demonstrating p14ARF-p53 is a central orchestrator of the annexin/S100A family of calcium regulators in favor of pro-survival functions in the breast cancer cell. This regulation was found to be cell-type specific. Retrospective human breast cancer studies have demonstrated that tumors with functional wild type p53 (p53wt) respond poorly to some chemotherapy agents compared to tumors with a non-functional p53. Given that modulation of calcium signaling has been demonstrated to change sensitivity of chemotherapeutic agents to apoptotic signals, in principle, we explored the paradigm of how p53 modulation of calcium regulators in ER+ breast cancer patients impacts and influences therapeutic outcomes.
Total citations
2017201820192020202120222023202415626341