Authors
Alessio Antolini, Carmine Paolino, Francesco Zavalloni, Andrea Lico, Eleonora Franchi Scarselli, Mauro Mangia, Fabio Pareschi, Gianluca Setti, Riccardo Rovatti, Mattia Luigi Torres, Marcella Carissimi, Marco Pasotti
Publication date
2023/2/2
Journal
IEEE Journal on Emerging and Selected Topics in Circuits and Systems
Volume
13
Issue
1
Pages
395-407
Publisher
IEEE
Description
Matrix-Vector Multiplications (MVMs) represent a heavy workload for both training and inference in Deep Neural Networks (DNNs) applications. Analog In-memory Computing (AIMC) systems based on Phase Change Memory (PCM) has been shown to be a valid competitor to enhance the energy efficiency of DNN accelerators. Although DNNs are quite resilient to computation inaccuracies, PCM non-idealities could strongly affect MVM operations precision, and thus the accuracy of DNNs. In this paper, a combined hardware and software solution to mitigate the impact of PCM non-idealities is presented. The drift of PCM cells conductance is compensated at the circuit level through the introduction of a conductance ratio at the core of the MVM computation. A model of the behaviour of PCM cells is employed to develop a device-aware training for DNNs and the accuracy is estimated in a CIFAR-10 classification task …
Total citations
Scholar articles
A Antolini, C Paolino, F Zavalloni, A Lico, EF Scarselli… - IEEE Journal on Emerging and Selected Topics in …, 2023