Authors
Balabhaskar Prabhakarpandian, Ming-Che Shen, Joseph B Nichols, Ivy R Mills, Marta Sidoryk-Wegrzynowicz, Michael Aschner, Kapil Pant
Publication date
2013
Journal
Lab on a Chip
Volume
13
Issue
6
Pages
1093-1101
Publisher
Royal Society of Chemistry
Description
Current techniques for mimicking the Blood–Brain Barrier (BBB) largely use incubation chambers (Transwell) separated with a filter and matrix coating to represent and to study barrier permeability. These devices have several critical shortcomings: (a) they do not reproduce critical microenvironmental parameters, primarily anatomical size or hemodynamic shear stress, (b) they often do not provide real-time visualization capability, and (c) they require a large amount of consumables. To overcome these limitations, we have developed a microfluidics based Synthetic Microvasculature model of the Blood–Brain Barrier (SyM-BBB). The SyM-BBB platform is comprised of a plastic, disposable and optically clear microfluidic chip with a microcirculation sized two-compartment chamber. The chamber is designed in such a way as to permit the realization of side-by-side apical and basolateral compartments, thereby …
Total citations
20132014201520162017201820192020202120222023202482520443048384240292912
Scholar articles
B Prabhakarpandian, MC Shen, JB Nichols, IR Mills… - Lab on a Chip, 2013