Authors
Ahmed M Ali, Aly A Ghobashy, Abdelrahman A Sultan, Khalil I Elkhodary, Mohamed El-Morsi
Publication date
2024
Journal
Heliyon
Volume
10
Issue
4
Pages
e26190
Publisher
Elsevier
Description
In this study a frequency scaling law for 3D anatomically representative supravalvular aortic stenosis (SVAS) cases is proposed. The law is uncovered for stethoscopy's preferred auscultation range (70-120 Hz). LES simulations are performed on the CFD solver Fluent, leveraging Simulia's Living Heart Human Model (LHHM), modified to feature hourglass stenoses that range between 30 to 80 percent (mild to severe) in addition to the descending aorta. For physiological hemodynamic boundary conditions the Windkessel model is implemented via a UDF subroutine. The flow-generated acoustic signal is then extracted using the FW-H model and analyzed using FFT. A preferred receiver location that matches clinical practice is confirmed (right intercostal space) and a correlation between the degree of stenosis and a corresponding acoustic frequency is obtained. Five clinical auscultation signals are tested against the …
Scholar articles