Authors
Zhiyuan Tang, Yu Wang, Khalil I Elkhodary, Zefeng Yu, Shan Tang, Dan Peng
Publication date
2024/3/1
Journal
Defence Technology
Volume
33
Pages
55-65
Publisher
Elsevier
Description
Brain tissue is one of the softest parts of the human body, composed of white matter and grey matter. The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function. Besides, traumatic brain injury (TBI) and various brain diseases are also greatly influenced by the brain's mechanical properties. Whether white matter or grey matter, brain tissue contains multiscale structures composed of neurons, glial cells, fibers, blood vessels, etc., each with different mechanical properties. As such, brain tissue exhibits complex mechanical behavior, usually with strong nonlinearity, heterogeneity, and directional dependence. Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging. Instead, this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue. We focus on blood …
Scholar articles