Authors
Afnan Elhamshari, Khalil Elkhodary
Publication date
2024/2/13
Journal
Heliyon
Volume
10
Issue
4
Pages
e26143
Publisher
Elsevier
Description
Accurate cell-level active tension modeling for cardiomyocytes is critical to understanding cardiac functionality on a subject-specific basis. However, cell-level models in the literature fail to account for viscoelasticity and inter-subject variations in active tension, which are relevant to disease diagnostics and drug screening, e.g., for cardiotoxicity. Thus, we propose a fractional order system to model cell-level active tension by extending Land's state-of-the-art model of cardiac contraction. Our approach features the (left) Caputo derivative of six state variables that identify the mechanistic origins of viscoelasticity in a myocardial cell in terms of the thin filament, thick filament, and length-dependent interactions. This proposed CLS is the first of its kind for active tension modeling in cells and demonstrates notable subject-specificity, with smaller mean square errors than the reference model relative to cell-level experiments …