Authors
Darren P Martin, Spyros Lytras, Alexander G Lucaci, Wolfgang Maier, Björn Grüning, Stephen D Shank, Steven Weaver, Oscar A MacLean, Richard J Orton, Philippe Lemey, Maciej F Boni, Houriiyah Tegally, Gordon W Harkins, Cathrine Scheepers, Jinal N Bhiman, Josie Everatt, Daniel G Amoako, James Emmanuel San, Jennifer Giandhari, Alex Sigal, NGS-SA, Carolyn Williamson, Nei-yuan Hsiao, Anne von Gottberg, Arne De Klerk, Robert W Shafer, David L Robertson, Robert J Wilkinson, B Trevor Sewell, Richard Lessells, Anton Nekrutenko, Allison J Greaney, Tyler N Starr, Jesse D Bloom, Ben Murrell, Eduan Wilkinson, Ravindra K Gupta, Tulio de Oliveira, Sergei L Kosakovsky Pond
Publication date
2022/4/1
Journal
Molecular biology and evolution
Volume
39
Issue
4
Pages
msac061
Publisher
Oxford University Press
Description
Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore …
Total citations
20212022202320241474614