Authors
Yang Huang, Yansong Bao, George P Petropoulos, Qifeng Lu, Yanfeng Huo, Fu Wang
Publication date
2024/4/3
Journal
Remote Sensing
Volume
16
Issue
7
Pages
1267
Publisher
MDPI
Description
Precipitation is the basic component of the Earth’s water cycle. Obtaining high-resolution and high-precision precipitation data is of great significance. This paper establishes a precipitation retrieval model based on a random forest classification and regression model during the day and at night with FY-4B/AGRI Level1 data on China from July to August 2022. To evaluate the retrieval effect of the model, the GPM IMERG product is used as a reference, and the retrieval results are compared against those of the FY-4B/AGRI operational precipitation product. In addition, the retrieval results are analyzed according to different underlying surfaces. The results showed that compared with the FY-4B/AGRI operational precipitation product, the retrieval model can better identify precipitation and capture precipitation areas of light rain, moderate rain, heavy rain and torrential rain. Among them, the probability of detection (POD) of the day model increased from 0.328 to 0.680, and the equitable threat score (ETS) increased from 0.252 to 0.432. The POD of the night model increased from 0.337 to 0.639, and the ETS score increased from 0.239 to 0.369. Meanwhile, the precipitation estimation accuracy of the day model increased by 38.98% and that of the night model increased by 40.85%. Our results also showed that due to the surface uniformity of the ocean, the model can identify precipitation better on the ocean than on the land. Our findings also indicated that for the different underlying surfaces of the land, there is no significant difference in each evaluation index of the model. This is a strong argument for the universal applicability of the model. Notably, the …
Total citations
Scholar articles