Authors
Gil Sharon, Nikki Jamie Cruz, Dae-Wook Kang, Michael J Gandal, Bo Wang, Young-Mo Kim, Erika M Zink, Cameron P Casey, Bryn C Taylor, Christianne J Lane, Lisa M Bramer, Nancy G Isern, David W Hoyt, Cecilia Noecker, Michael J Sweredoski, Annie Moradian, Elhanan Borenstein, Janet K Jansson, Rob Knight, Thomas O Metz, Carlos Lois, Daniel H Geschwind, Rosa Krajmalnik-Brown, Sarkis K Mazmanian
Publication date
2019/5/30
Journal
Cell
Volume
177
Issue
6
Pages
1600-1618. e17
Publisher
Elsevier
Description
Autism spectrum disorder (ASD) manifests as alterations in complex human behaviors including social communication and stereotypies. In addition to genetic risks, the gut microbiome differs between typically developing (TD) and ASD individuals, though it remains unclear whether the microbiome contributes to symptoms. We transplanted gut microbiota from human donors with ASD or TD controls into germ-free mice and reveal that colonization with ASD microbiota is sufficient to induce hallmark autistic behaviors. The brains of mice colonized with ASD microbiota display alternative splicing of ASD-relevant genes. Microbiome and metabolome profiles of mice harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD behaviors. Indeed, treatment of an ASD mouse model with candidate microbial metabolites improves behavioral abnormalities and modulates neuronal …
Total citations
20192020202120222023202435171195216192127