Authors
Peng Zong, Hao Xu, Dazhen Tang, Zhenhong Chen, Feiyu Huo
Publication date
2024/7/1
Journal
SPE Journal
Pages
1-14
Description
In fractured reservoirs, the fracture system is considered to be the main channel for fluid flow. To better investigate the impacts of fracture morphology (tortuosity and roughness) and spatial distribution on the flow capacity, a fractal model of fracture permeability was developed. Based on micro-computed tomography (CT) images, the 3D structure of the fracture was reconstructed, and the fractal characteristics were systematically analyzed. Finally, the control of permeability by fracture morphology and spatial distribution in different fractured reservoirs was identified. The results demonstrate that the complexity of the fracture distribution in 2D slices can represent the nature of the fracture distribution in 3D space. The permeability fractal prediction model was developed based on porosity (φ), spatial distribution fractal dimension (Df), tortuosity fractal dimension (DT), and opening fractal dimension of the maximum width …