Authors
Lea Schönherr, Katharina Kohls, Steffen Zeiler, Thorsten Holz, Dorothea Kolossa
Publication date
2019
Conference
Network and Distributed System Security Symposium (NDSS)
Description
Voice interfaces are becoming accepted widely as input methods for a diverse set of devices. This development is driven by rapid improvements in automatic speech recognition (ASR), which now performs on par with human listening in many tasks. These improvements base on an ongoing evolution of DNNs as the computational core of ASR. However, recent research results show that DNNs are vulnerable to adversarial perturbations, which allow attackers to force the transcription into a malicious output. In this paper, we introduce a new type of adversarial examples based on psychoacoustic hiding. Our attack exploits the characteristics of DNN-based ASR systems, where we extend the original analysis procedure by an additional backpropagation step. We use this backpropagation to learn the degrees of freedom for the adversarial perturbation of the input signal, i.e., we apply a psychoacoustic model and manipulate the acoustic signal below the thresholds of human perception. To further minimize the perceptibility of the perturbations, we use forced alignment to find the best fitting temporal alignment between the original audio sample and the malicious target transcription. These extensions allow us to embed an arbitrary audio input with a malicious voice command that is then transcribed by the ASR system, with the audio signal remaining barely distinguishable from the original signal. In an experimental evaluation, we attack the state-of-the-art speech recognition system Kaldi and determine the best performing parameter and analysis setup for different types of input. Our results show that we are successful in up to 98% of cases with a …
Total citations
20182019202020212022202320241276575727633
Scholar articles
L Schönherr, K Kohls, S Zeiler, T Holz, D Kolossa - arXiv preprint arXiv:1808.05665, 2018