Authors
Rosa Sola Molina, Gemma Lamp, Laila Hugrass, Russell Beaton, Marten de Man, Lisa Wise, David Crewther, Melvyn Goodale, Sheila Crewther
Publication date
2021/9/9
Journal
BioRxiv
Pages
2021.09. 07.459353
Publisher
Cold Spring Harbor Laboratory
Description
Background
Previous brain-scanning research exploring the neural mechanisms underpinning visuomotor planning and control has mostly been done without simultaneous motion-tracking and eye-tracking. Employing concurrent methodologies would enhance understanding of the brain mechanisms underlying visuomotor integration of cognitive, visual, ocular, and motor aspects of reaching and grasping behaviours. Therefore, this work presents the methods and validation for a high-speed, multimodal and synchronized system to holistically examine neural processes that are involved in visually-guided movement.
Methods
The multimodal methods included high speed 3D motion tracking (Qualisys), 2D eye-tracking (SR Research), and magnetoencephalography (MEG; Elekta) that were synchronized to millisecond precision. Previous MRIs were taken to provide improved spatial localization. The methods section describes the system layout and acquisition parameters to achieve multimodal synchronization. Pilot results presented here are preliminary data from a larger study including 29 participants. Using a pincer grip, five people (3 male, 2 female, ages 30-32) reached for and grasped a translucent dowel 50 times, after it was pseudorandomly illuminated. The object illumination was the Go cue. Seven discrete time points (events) throughout the task were chosen for investigation of simultaneous brain, hand and eye activity associated with specific visual (Go cue), oculomotor (1st saccade after Go), motor (Reaction Time; RT, Maximum Velocity: MV, Maximum Grip Width; MGW) or cognitive (Ready, End) mechanisms. Time-frequency analyses …
Total citations
Scholar articles