Authors
Matteo Cerminara, Tomaso Esposti Ongaro, Luigi Carlo Berselli
Publication date
2016/2/18
Journal
Geoscientific Model Development
Volume
9
Issue
http://www.geosci-model-dev.net/9/697/20
Pages
697-730
Publisher
European Geosciences Union
Description
A new fluid-dynamic model is developed to numerically simulate the non-equilibrium dynamics of polydisperse gas–particle mixtures forming volcanic plumes. Starting from the three-dimensional N-phase Eulerian transport equations for a mixture of gases and solid dispersed particles, we adopt an asymptotic expansion strategy to derive a compressible version of the first-order non-equilibrium model, valid for low-concentration regimes (particle volume fraction less than 10−3) and particle Stokes number (St – i.e., the ratio between relaxation time and flow characteristic time) not exceeding about 0.2. The new model, which is called ASHEE (ASH Equilibrium Eulerian), is significantly faster than the N-phase Eulerian model while retaining the capability to describe gas–particle non-equilibrium effects. Direct Numerical Simulation accurately reproduces the dynamics of isotropic, compressible turbulence in subsonic regimes. For gas–particle mixtures, it describes the main features of density fluctuations and the preferential concentration and clustering of particles by turbulence, thus verifying the model reliability and suitability for the numerical simulation of high-Reynolds number and high-temperature regimes in the presence of a dispersed phase. On the other hand, Large-Eddy Numerical Simulations of forced plumes are able to reproduce the averaged and instantaneous flow properties. In particular, the self-similar Gaussian radial profile and the development of large-scale coherent structures are reproduced, including the rate of turbulent mixing and entrainment of atmospheric air. Application to the Large-Eddy Simulation of the injection of the …
Total citations
2015201620172018201920202021202220232024113496991057
Scholar articles
M Cerminara, T Esposti Ongaro, LC Berselli - Geoscientific Model Development, 2016