Authors
Kaiyan Li, Weimin Zhou, Hua Li, Mark A Anastasio
Publication date
2021/12/13
Journal
IEEE transactions on medical imaging
Volume
41
Issue
5
Pages
1114-1124
Publisher
IEEE
Description
The ideal observer (IO) sets an upper performance limit among all observers and has been advocated for assessing and optimizing imaging systems. For general joint detection and estimation (detection-estimation) tasks, estimation ROC (EROC) analysis has been established for evaluating the performance of observers. However, in general, it is difficult to accurately approximate the IO that maximizes the area under the EROC curve. In this study, a hybrid method that employs machine learning is proposed to accomplish this. Specifically, a hybrid approach is developed that combines a multi-task convolutional neural network and a Markov-Chain Monte Carlo (MCMC) method in order to approximate the IO for detection-estimation tasks. Unlike traditional MCMC methods, the hybrid method is not limited to use of specific utility functions. In addition, a purely supervised learning-based sub-ideal observer is proposed …
Total citations
202220232024553