Authors
Fida Ali, Chatchawin Srisuwan, Kuaanan Techato, Adul Bennui, Tanita Suepa, Damrongrit Niammuad
Publication date
2020/4/6
Journal
Energies
Volume
13
Issue
7
Pages
1749
Publisher
MDPI
Description
Conventional hydropower technologies such as dams have been criticized due to their negative environmental effects which have necessitated the development of new technologies for sustainable development of hydropower energy. Hydrokinetic (HK) energy is one such emerging renewable energy technology and, in this study, a theoretical potential assessment was done using a Geographic Information System (GIS) and Soil and Water Assessment Tool (SWAT) hydrological model, for the U-Tapao river basin (URB), a major tributary of the Songkhla lake basin (SLB) in southern Thailand. The SWAT was calibrated and validated with SWAT calibration and uncertainty (SWAT-CUP)-SUFI 2 programs using the observed discharge data from the gauging stations within the watershed. The model performance was evaluated based on the Nash–Sutcliffe efficiency (NSE) and the coefficient of determination (R2) values, achieving 0.62 and 0.60, respectively, for calibration, and 0.65 and 0.68 for validation which is considered acceptable and can be used to represent flow estimation. The theoretical HK potential was estimated to be 71.9 MW along the 77.18 km U-Tapao river, which could be developed as a renewable and reliable energy source for the communities living around the river. The method developed could also be applied to river systems around the world for resource and time efficient HK potential assessments.
Total citations
20212022202320246711
Scholar articles