Authors
Erulappan Sakthivel, Veluchamy Malathi, Muruganantham ARUNRAJA, Govindaraj Perumal vignesh
Publication date
2016/7
Journal
International Journal of Innovation and Scientific Research (IJISR)
Volume
25
Issue
2
Pages
646–653
Publisher
ISSR Journals
Description
Bilateral filters use a wide range of medical and industrial applications. The limitations of conventional bilateral filter architecture are having a minimum kernel size and constant delay. This constant delay depends on two modules available in architecture such as the width of the image and sum of processing elements. Due to the inputs variation the kernel size can extent which may affect overall performance in terms of all the image quality assessment and performance in FPGA level (scalability, latency, power consumption). To evade this problem Low power, high speed FPGA based Novel Approach for Bilateral filter (NABI) are introduced. This NABI consists of Structure Shared Architecture (SSA), Master Control Unit (combination of intensity calculator and graph theory based traffic estimator), kernel based clock unit and Reconfigurable server. These components are described on the register transfer level implemented in VHDL. Depends upon the size of the kernel the reconfiguration is taking place via reconfigurable server. The intensity calculator is used to estimate the intensity of image and that intensity value is placed in normalization block to achieve better PSNR and MSE. This proposed NABI is implemented in a Virtex-5VLX50-1 device. The performance results in terms of FPGA level 31.69% slice reduction, 49.51% frame rate improvement, 28.96% power reduction and 50% latency reduction are achieved. The image quality assessment is also observed and compared with conventional algorithms. Thus, NABI work achieves better outcome than conventional work.
Total citations
Scholar articles
E Sakthivel, V Malalthi, M Arunraja, G Perumalvignesh - Intl. J. Innovation and Scientific Res, 2016