Authors
Fabrice Besnard, Yassin Refahi, Valérie Morin, Benjamin Marteaux, Géraldine Brunoud, Pierre Chambrier, Frédérique Rozier, Vincent Mirabet, Jonathan Legrand, Stéphanie Lainé, Emmanuel Thévenon, Etienne Farcot, Coralie Cellier, Pradeep Das, Anthony Bishopp, Renaud Dumas, François Parcy, Ykä Helariutta, Arezki Boudaoud, Christophe Godin, Jan Traas, Yann Guédon, Teva Vernoux
Publication date
2014/1/16
Journal
Nature
Volume
505
Issue
7483
Pages
417-421
Publisher
Nature Publishing Group UK
Description
How biological systems generate reproducible patterns with high precision is a central question in science. The shoot apical meristem (SAM), a specialized tissue producing plant aerial organs, is a developmental system of choice to address this question. Organs are periodically initiated at the SAM at specific spatial positions and this spatiotemporal pattern defines phyllotaxis. Accumulation of the plant hormone auxin triggers organ initiation,,,, whereas auxin depletion around organs generates inhibitory fields that are thought to be sufficient to maintain these patterns and their dynamics,,,,,,,,. Here we show that another type of hormone-based inhibitory fields, generated directly downstream of auxin by intercellular movement of the cytokinin signalling inhibitor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), is involved in regulating phyllotactic patterns. We demonstrate that AHP6-based fields …
Total citations
201420152016201720182019202020212022202320241828353124283035231914
Scholar articles