Authors
Kaitlin E Samocha, Elise B Robinson, Stephan J Sanders, Christine Stevens, Aniko Sabo, Lauren M McGrath, Jack A Kosmicki, Karola Rehnström, Swapan Mallick, Andrew Kirby, Dennis P Wall, Daniel G MacArthur, Stacey B Gabriel, Mark DePristo, Shaun M Purcell, Aarno Palotie, Eric Boerwinkle, Joseph D Buxbaum, Edwin H Cook Jr, Richard A Gibbs, Gerard D Schellenberg, James S Sutcliffe, Bernie Devlin, Kathryn Roeder, Benjamin M Neale, Mark J Daly
Publication date
2014/9
Journal
Nature genetics
Volume
46
Issue
9
Pages
944-950
Publisher
Nature Publishing Group UK
Description
Spontaneously arising (de novo) mutations have an important role in medical genetics. For diseases with extensive locus heterogeneity, such as autism spectrum disorders (ASDs), the signal from de novo mutations is distributed across many genes, making it difficult to distinguish disease-relevant mutations from background variation. Here we provide a statistical framework for the analysis of excesses in de novo mutation per gene and gene set by calibrating a model of de novo mutation. We applied this framework to de novo mutations collected from 1,078 ASD family trios, and, whereas we affirmed a significant role for loss-of-function mutations, we found no excess of de novo loss-of-function mutations in cases with IQ above 100, suggesting that the role of de novo mutations in ASDs might reside in fundamental neurodevelopmental processes. We also used our model to identify ∼1,000 genes that are …
Total citations
20142015201620172018201920202021202220232024975116129140172991101067352
Scholar articles
KE Samocha, EB Robinson, SJ Sanders, C Stevens… - Nature genetics, 2014