Authors
Byoung-Doo Lee, Yehyun Yim, Esther Cañibano, Suk-Hwan Kim, Marta García-León, Vicente Rubio, Sandra Fonseca, Nam-Chon Paek
Publication date
2021/12/6
Journal
bioRxiv
Pages
2021.12. 01.470837
Publisher
Cold Spring Harbor Laboratory
Description
Under favorable moisture, temperature and light conditions, gibberellin (GA) biosynthesis is induced and triggers seed germination. A major mechanism by which GA promotes seed germination is by promoting the degradation of the DELLA protein RGL2, a major repressor of germination in Arabidopsis seeds. Analysis of seed germination phenotypes of constitutively photomorphogenic 1 (cop1) mutants and complemented COP1-OX/cop1-4 lines in response to GA and paclobutrazol (PAC) suggested a positive role for COP1 in seed germination and a relation with GA signaling. cop1-4 mutant seeds showed PAC hypersensitivity, but transformation with a COP1 overexpression construct rendered them PAC insensitive, with a phenotype similar to that of rgl2 mutant (rgl2-SK54) seeds. Furthermore, cop1-4 rgl2-SK54 double mutants showed a PAC-insensitive germination phenotype like that of rgl2-SK54, identifying COP1 as an upstream negative regulator of RGL2. COP1 interacts directly with RGL2 and in vivo this interaction is strongly enhanced by SPA1. COP1 directly ubiquitinates RGL2 to promote its degradation. Moreover, GA stabilizes COP1 with consequent RGL2 destabilization. By uncovering this COP1-RGL2 regulatory module, we reveal a novel mechanism whereby COP1 positively regulates seed germination and controls the expression of germination-promoting genes.
Scholar articles
BD Lee, Y Yim, E Cañibano, SH Kim, M García-León… - bioRxiv, 2021