Authors
Ye Tian, Ying Sun, Gesualdo Scutari
Publication date
2020/3/3
Journal
IEEE Transactions on Automatic Control
Volume
65
Issue
12
Pages
5264-5279
Publisher
IEEE
Description
This article studies multiagent (convex and nonconvex) optimization over static digraphs. We propose a general distributed asynchronous algorithmic framework whereby 1) agents can update their local variables as well as communicate with their neighbors at any time, without any form of coordination; and 2) they can perform their local computations using (possibly) delayed, out-of-sync information from the other agents. Delays need not be known to the agent or obey any specific profile, and can also be time-varying (but bounded). The algorithm builds on a tracking mechanism that is robust against asynchrony (in the above sense), whose goal is to estimate locally the average of agents' gradients. When applied to strongly convex functions, we prove that it converges at an R-linear (geometric) rate as long as the step-size is sufficiently small. A sublinear convergence rate is proved, when nonconvex problems and …
Total citations
2019202020212022202320244141414226
Scholar articles