Authors
LA Donaldson, K Radotic
Publication date
2013/8
Journal
Journal of microscopy
Volume
251
Issue
2
Pages
178-187
Description
Wood cell walls fluoresce as a result of UV and visible light excitation due to the presence of lignin. Fluorescence spectroscopy has revealed characteristic spectral differences in various wood types, notably normal and compression wood. In order to extend this method of characterising cell walls we examined the fluorescence lifetime of wood cell walls using TCSPC (Time‐Correlated Single Photon Counting) as a method of potentially detecting differences in lignin composition and measuring the molecular environment within cell walls. The fluorescence decay curves of both normal and compression wood from pine contain three exponential decay components with a mean lifetime of τm = 473 ps in normal wood and 418 ps in compression wood. Lifetimes are spatially resolved to different cell wall layers or cell types where individual lifetimes are shown to have a log‐normal distribution. The differences in …
Total citations
2014201520162017201820192020202120222023202441091019131319242011