Authors
Lukasz Krych, Camilla HF Hansen, Axel K Hansen, Frans WJ van den Berg, Dennis S Nielsen
Publication date
2013/5/1
Journal
PloS one
Volume
8
Issue
5
Pages
e62578
Publisher
Public Library of Science
Description
Background
A number of human diseases such as obesity and diabetes are associated with changes or imbalances in the gut microbiota (GM). Laboratory mice are commonly used as experimental models for such disorders. The introduction and dynamic development of next generation sequencing techniques have enabled detailed mapping of the GM of both humans and animal models. Nevertheless there is still a significant knowledge gap regarding the human and mouse common GM core and thus the applicability of the latter as an animal model. The aim of the present study was to identify inter- and intra-individual differences and similarities between the GM composition of particular mouse strains and humans.
Methodology/Principal Findings
A total of 1509428 high quality tag-encoded partial 16S rRNA gene sequences determined using 454/FLX Titanium (Roche) pyro-sequencing reflecting the GM composition of 32 human samples from 16 individuals and 88 mouse samples from three laboratory mouse strains commonly used in diabetes research were analyzed using Principal Coordinate Analysis (PCoA), nonparametric multivariate analysis of similarity (ANOSIM) and alpha diversity measures. A reliable cutoff threshold for low abundant taxa estimated on the basis of the present study is recommended for similar trials.
Conclusions/Significance
Distinctive quantitative differences in the relative abundance of most taxonomic groups between the examined categories were found. All investigated mouse strains clustered separately, but with a range of shared features when compared to the human GM. However, both mouse fecal, caecal …
Total citations
2013201420152016201720182019202020212022202320242191871625252438322416