Authors
Giuseppe Di Pede, Letizia Bresciani, Furio Brighenti, Michael N Clifford, Alan Crozier, Daniele Del Rio, Pedro Mena
Publication date
2022/11
Journal
Molecular nutrition & food research
Volume
66
Issue
21
Pages
2101090
Description
Scope
The study evaluates the influence of flavan‐3‐ol structure on the production of phenolic catabolites, principally phenyl‐γ‐valerolactones (PVLs), and phenylvaleric acids (PVAs).
Methods and Results
A set of 12 monomeric flavan‐3‐ols and proanthocyanidins (degree of polymerization (DP) of 2–5), are fermented in vitro for 24 h using human faecal microbiota, and catabolism is analyzed by UHPLC‐ESI‐MS/MS. Up to 32 catabolites strictly related to microbial catabolism of parent compounds are detected. (+)‐Catechin and (−)‐epicatechin have the highest molar mass recoveries, expressed as a percentage with respect to the incubated concentration (75 µmol L–1) of the parent compound, for total PVLs and PVAs, both at 5 h (about 20%) and 24 h (about 40%) of faecal incubation. Only A‐type dimer and B‐type procyanidins underwent the ring fission step, and no differences are found in total PVL and PVA …
Total citations
2022202320243912
Scholar articles