Authors
Takehiro Ito, Yuni Iwamasa, Yasuaki Kobayashi, Yu Nakahata, Yota Otachi, Masahiro Takahashi, Kunihiro Wasa
Publication date
2022/3/25
Journal
arXiv preprint arXiv:2203.13435
Description
\textsc{Directed Token Sliding} asks, given a directed graph and two sets of pairwise nonadjacent vertices, whether one can reach from one set to the other by repeatedly applying a local operation that exchanges a vertex in the current set with one of its out-neighbors, while keeping the nonadjacency. It can be seen as a reconfiguration process where a token is placed on each vertex in the current set, and the local operation slides a token along an arc respecting its direction. Previously, such a problem was extensively studied on undirected graphs, where the edges have no directions and thus the local operation is symmetric. \textsc{Directed Token Sliding} is a generalization of its undirected variant since an undirected edge can be simulated by two arcs of opposite directions. In this paper, we initiate the algorithmic study of \textsc{Directed Token Sliding}. We first observe that the problem is PSPACE-complete even if we forbid parallel arcs in opposite directions and that the problem on directed acyclic graphs is NP-complete and W[1]-hard parameterized by the size of the sets in consideration. We then show our main result: a linear-time algorithm for the problem on directed graphs whose underlying undirected graphs are trees, which are called polytrees. Such a result is also known for the undirected variant of the problem on trees~[Demaine et al.~TCS 2015], but the techniques used here are quite different because of the asymmetric nature of the directed problem. We present a characterization of yes-instances based on the existence of a certain set of directed paths, and then derive simple equivalent conditions from it by some observations …
Total citations
202220232024112
Scholar articles
T Ito, Y Iwamasa, Y Kobayashi, Y Nakahata, Y Otachi… - arXiv preprint arXiv:2203.13435, 2022