Authors
Qi Zhang, DR Worsnop, MR Canagaratna, JL Jimenez
Publication date
2005/12/14
Journal
Atmospheric Chemistry and Physics
Volume
5
Issue
12
Pages
3289-3311
Publisher
Copernicus GmbH
Description
A recently developed algorithm (Zhang et al., 2005) has been applied to deconvolve the mass spectra of organic aerosols acquired with the Aerosol Mass Spectrometer (AMS) in Pittsburgh during September 2002. The results are used here to characterize the mass concentrations, size distributions, and mass spectra of hydrocarbon-like and oxygenated organic aerosol (HOA and OOA, respectively). HOA accounts for 34% of the measured organic aerosol mass and OOA accounts for 66%. The mass concentrations of HOA demonstrate a prominent diurnal profile that peaks in the morning during the rush hour and decreases with the rise of the boundary layer. The diurnal profile of OOA is relatively flat and resembles those of SO42− and NH4+. The size distribution of HOA shows a distinct ultrafine mode that is commonly associated with fresh emissions while OOA is generally concentrated in the accumulation mode and appears to be mostly internally mixed with the inorganic ions, such as SO42− and NH4+. These observations suggest that HOA is likely primary aerosol from local, combustion-related emissions and that OOA is secondary organic aerosol (SOA) influenced by regional contributions. There is strong evidence of the direct correspondence of OOA to SOA during an intense new particle formation and growth event, when condensational growth of OOA was observed. The fact that the OOA mass spectrum from this event is very similar to that from the entire study suggests that the majority of OOA in Pittsburgh is likely SOA. O3 appears to be a poor indicator for OOA concentration while SO42− is a relatively good surrogate for this dataset …
Total citations
200620072008200920102011201220132014201520162017201820192020202120222023202417404941385027243942272427252923241114
Scholar articles