Authors
Patrick P Mercier, Denis C Daly, Anantha P Chandrakasan
Publication date
2009/5/27
Journal
IEEE Journal of Solid-State Circuits
Volume
44
Issue
6
Pages
1679-1688
Publisher
IEEE
Description
This paper presents an all-digital, non-coherent, pulsed-UWB transmitter. By exploiting relaxed center frequency tolerances in non-coherent wideband communication, the transmitter synthesizes UWB pulses from an energy-efficient, single-ended digital ring oscillator. Dual capacitively coupled digital power amplifiers (PAs) are used in tandem to attenuate low frequency content typically associated with single-ended digital circuits driving single-ended antennas. Furthermore, four level digital pulse shaping is employed to attenuate RF sidelobes, resulting in FCC compliant operation in the 3.5, 4.0, and 4.5 GHz IEEE 802.15.4a bands without the use of any off-chip filters or large passive components. The transmitter is fabricated in a 90 nm CMOS process and occupies a core area of 0.07 mm 2 . The entirely digital architecture consumes zero static bias current, resulting in an energy efficiency of 17.5 pJ/pulse at data …
Total citations
20092010201120122013201420152016201720182019202020212022202321417161920111367611885
Scholar articles