Authors
Bin Yuan, Abigail Koss, Carsten Warneke, Jessica B Gilman, Brian M Lerner, Harald Stark, Joost A de Gouw
Publication date
2016/7/1
Journal
Atmospheric Measurement Techniques
Volume
9
Issue
6
Pages
2735-2752
Publisher
Copernicus GmbH
Description
Proton transfer reactions between hydronium ions (H3O+) and volatile organic compounds (VOCs) provide a fast and highly sensitive technique for VOC measurements, leading to extensive use of proton-transfer-reaction mass spectrometry (PTR-MS) in atmospheric research. Based on the same ionization approach, we describe the development of a high-resolution time-of-flight chemical ionization mass spectrometer (ToF-CIMS) utilizing H3O+ as the reagent ion. The new H3O+ ToF-CIMS has sensitivities of 100–1000 cps ppb−1 (ion counts per second per part-per-billion mixing ratio of VOC) and detection limits of 20–600 ppt at 3σ for a 1 s integration time for simultaneous measurements of many VOC species of atmospheric relevance. The ToF analyzer with mass resolution (m∕Δm) of up to 6000 allows the separation of isobaric masses, as shown in previous studies using similar ToF-MS. While radio frequency (RF)-only quadrupole ion guides provide better overall ion transmission than ion lens system, low-mass cutoff of RF-only quadrupole causes H3O+ ions to be transmitted less efficiently than heavier masses, which leads to unusual humidity dependence of reagent ions and difficulty obtaining a humidity-independent parameter for normalization. The humidity dependence of the instrument was characterized for various VOC species and the behaviors for different species can be explained by compound-specific properties that affect the ion chemistry (e.g., proton affinity and dipole moment). The new H3O+ ToF-CIMS was successfully deployed on the NOAA WP-3D research aircraft for the SONGNEX campaign in spring of 2015. The …
Total citations
20162017201820192020202120222023202421081251611147