Authors
Hong-Li Zeng, Erik Aurell
Publication date
2020/5
Journal
Physical Review E
Volume
101
Issue
5
Pages
052409
Publisher
American Physical Society
Description
The genetic composition of a naturally developing population is considered as due to mutation, selection, genetic drift, and recombination. Selection is modeled as single-locus terms (additive fitness) and two-loci terms (pairwise epistatic fitness). The problem is posed to infer epistatic fitness from population-wide whole-genome data from a time series of a developing population. We generate such data in silico and show that in the quasilinkage equilibrium phase of Kimura, Neher, and Shraiman, which pertains at high enough recombination rates and low enough mutation rates, epistatic fitness can be quantitatively correctly inferred using inverse Ising-Potts methods.
Total citations
2020202120222023202442232
Scholar articles