Authors
Mohammad Reza Shaeri, Tien-Chien Jen
Publication date
2012/12/1
Journal
Energy Conversion and Management
Volume
64
Pages
328-334
Publisher
Pergamon
Description
Shaeri and Yaghoubi [25] reported the highest heat transfer rate in a laminar flow for a perforated fin with the most perforations (porosity), regardless of investigation on the effects of perforation sizes. In this study, the effects of size and number of perforations on laminar heat transfer characteristics of an array of perforated fins at the highest porosity of the study of Shaeri and Yaghoubi [25] have been numerically investigated. The Navier–Stokes and energy equations are solved by the finite volume procedure using the SIMPLE algorithm. Results show that at a specific porosity, the thermal entrance length of each perforation of a fin with a lower number of perforations is larger than that of each perforation of a fin with a higher number of perforations. Therefore, in a laminar flow and at a constant porosity, a fin with fewer perforations is more efficient to enhance the heat transfer rate compared with a fin with more …
Total citations
2013201420152016201720182019202020212022202320241491216612331063