Authors
E Orgiu, J George, JA Hutchison, E Devaux, JF Dayen, B Doudin, F Stellacci, C Genet, J Schachenmayer, Claudiu Genes, G Pupillo, P Samorì, TW Ebbesen
Publication date
2015/11
Journal
Nature Materials
Volume
14
Issue
11
Pages
1123-1129
Publisher
Nature Publishing Group UK
Description
Much effort over the past decades has been focused on improving carrier mobility in organic thin-film transistors by optimizing the organization of the material or the device architecture. Here we take a different path to solving this problem, by injecting carriers into states that are hybridized to the vacuum electromagnetic field. To test this idea, organic semiconductors were strongly coupled to plasmonic modes to form coherent states that can extend over as many as 105 molecules and should thereby favour conductivity. Experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility. A theoretical quantum model confirms the delocalization of the wavefunctions of the hybridized states and its effect on the conductivity. Our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify …
Total citations
20152016201720182019202020212022202320243363464856686918358
Scholar articles
E Orgiu, J George, JA Hutchison, E Devaux, JF Dayen… - Nature Materials, 2015