Authors
Longhai Li, Radford M Neal
Publication date
2008/12/1
Volume
3
Issue
4
Pages
793-821
Description
Bayesian classification and regression with high-order interactions is largely infeasible because Markov chain Monte Carlo (MCMC) would need to be applied with a great many parameters, whose number increases rapidly with the order. In this paper we show how to make it feasible by effectively reducing the number of parameters, exploiting the fact that many interactions have the same values for all training cases. Our method uses a single "compressed" parameter to represent the sum of all parameters associated with a set of patterns that have the same value for all training cases. Using symmetric stable distributions as the priors of the original parameters, we can easily find the priors of these compressed parameters. We therefore need to deal only with a much smaller number of compressed parameters when training the model with MCMC. After training …
Total citations
2009201020112012201320142015201620172018122122