Authors
Sourav Taru Saha, Naaziyah Abdulla, Tawanda Zininga, Addmore Shonhai, Reubina Wadee, Mandeep Kaur
Publication date
2023/5/18
Journal
Cancers
Volume
15
Issue
10
Pages
2828
Publisher
MDPI
Description
Simple Summary
Breast cancer is a global burden with the most severe subtype being triple negative breast cancer (TNBC). Despite advances in conventional therapies, treatment for TNBC is currently lacking. Interestingly, cholesterol has gained interest as a potential therapeutic target due to cancer cells’ increased reliance on this macromolecule. In this study we aimed to assess the effects of cholesterol depletion as a therapeutic target in TNBC. We show that treatment with the cholesterol-depletory agent 2-hydroxypropyl-β-cyclodextrin (HPβCD) impeded the growth of cancer cells and further led to cancer cell death, which could be attributed to an altered cellular cholesterol profile following treatment. Furthermore, mice xenograft studies indicated complete eradication of early-stage tumours with no relapse, followed by a remarkable reduction in intermediate- and late-stage tumours, respectively. We have also identified SFRP1 as a possible molecular target facilitating the therapeutic action of HPβCD. These findings consequently potentiate cholesterol depletion as a novel anticancer strategy to be pursued.
Abstract
Cholesterol accumulation is documented in various malignancies including breast cancer. Consequently, depleting cholesterol in cancer cells can serve as a viable treatment strategy. We identified the potency of 2-hydroxypropyl-β-cyclodextrin (HPβCD), a cholesterol-depletor in vitro against two breast cancer cell lines: MCF-7 (Oestrogen-receptor positive, ER+) and MDA-MB-231 (Triple negative breast cancer (TNBC)). The results were then compared against two non-cancerous cell lines using …
Total citations
2023202433
Scholar articles