Authors
Matthew R Kuhn
Publication date
2016/2/1
Journal
Mechanics of Materials
Volume
93
Pages
63-80
Publisher
Elsevier
Description
A flow model is developed for dense shear-driven granular flow. As described in the geomechanics literature, a critical state condition is reached after sufficient shearing beyond an initial static packing. During further shearing at the critical state, the stress, fabric, and density remain nearly constant, even as particles are being continually rearranged. The paper proposes a predictive framework for critical state flow, viewing it as a condition of maximum disorder at the micro-scale. The flow model is constructed in a two-dimensional setting from the probability density of the motions, forces, and orientations of inter-particle contacts. Constraints are applied to this probability density: constant mean stress, constant volume, consistency of the contact dissipation rate with the stress work, and the fraction of sliding contacts. The differential form of Shannon entropy, a measure of disorder, is applied to the density, and the …
Total citations
2016201720182019202020212022202320242122151