Authors
Matthew R Kuhn
Publication date
2022/7
Journal
Acta Geotechnica
Volume
17
Issue
7
Pages
2611-2632
Publisher
Springer Berlin Heidelberg
Description
The paper describes a multi-phase, multi-scale rational method for modeling and predicting free-field wave propagation and the weakening and liquefaction of near-surface soils. The one-dimensional time-domain model of a soil column uses the discrete element method (DEM) to track stress and strain within a series of representative volume elements (RVEs), driven by seismic rock displacements at the column base. The RVE interactions are accomplished with a time-stepping finite-difference algorithm. The method applies Darcy’s principle to resolve the momentum transfer between a soil’s solid matrix and its interstitial pore fluid. Different algorithms are described for the dynamic period of seismic shaking and for the post-shaking consolidation period. The method can analyze numerous conditions and phenomena, including site-specific amplification, down-slope movement of sloping ground, dissolution or …
Total citations
202220232024223